
Creating ROS Launch Files Using A Visual
Programming Interface

Aditya Narayanamoorthy, Li Renjun, Huang Zhiyong
Robotics Department

Institute for Infocomm Research
Singapore

{adityan, li-r, zyhuang}@i2r.a-star.edu.sg

Abstract—Visual programming is widely used to allow users
to create programs by manipulating program elements
graphically rather than by specifying them textually. It is
intuitive and effective. However, it only starts to be used in
robotic programming. For example, in the Robot Operating
System (ROS), a popular framework used for developing robotic
applications, in order to run multiple modules together, a ROS
launch file needs to be created and used. The files are in XML
format and are difficult to write and understand for non-
technical users. To address this problem, in this paper, we
propose a visual programming software tool that helps in the
creation and visualization of these ROS launch files. This tool
enables non-experienced operators to program a robot at a
modular level. The tool is one among a set of software tools in the
Robot Application Development and Operating Environment
(RADOE), which aims to ease the development of robot
applications in ROS.

Keywords—Visual Programming, Robotics, ROS, Launch File

I. INTRODUCTION
In computer science and engineering, visual programming

is a programming tool that lets users create programs by
manipulating program elements graphically rather than by
specifying them textually. It allows programming with visual
expressions, spatial arrangements of text and graphic symbols,
used either as elements of syntax or secondary notation. For
example, many visual programming tools (known as dataflow
or diagrammatic programming) [1] are based on the idea of
boxes and arrows, where boxes or other screen objects are
treated as entities, connected by arrows, lines or arcs which
represent relations between these entities.

The Robot Operating System (ROS) [2] is an open-source
framework that is used to write robot software. It includes
libraries and other tools that help in simplifying various aspects
of robot software development, such as low-level device
control, combining various modules seamlessly etc.

The basic building blocks of ROS are nodes (C++ / Python
executables), which talk amongst each other by passing
messages through a central server over named buses called
topics; nodes can publish / subscribe to these topics to
broadcast / receive the messages. The nodes also make use of

user-defined arguments, or parameters that are stored on a
separate server.

While the nodes are usually designed as stand-alone, they
often need to be used in conjunction with other nodes for doing
any useful task. For example, in the context of a robot
simulation module, different ROS packages are needed for
displaying a GUI, performing motion planning, and visualising
robot motion; all of these need to be run in parallel and
communicate with each other (Figure 1). While this can be
achieved by starting each node and adding the required
arguments manually, this can be a cumbersome task. Instead,
ROS provides a simpler method to do this - using a ROS
launch file.

A ROS launch file is an XML-based file that specifies all
nodes, arguments and other parameters that need to be
launched together. This is a convenient way to launch multiple
nodes that work together. However, XML may not be an
intuitive format for a non-technical user to follow.

This paper introduces a set of software tools called the
Robot Application Development and Operating Environment
(RADOE), which aims to ease the development of robot
applications in ROS. In particular, the paper focuses on a tool
within this framework that helps the user create this via visual
programming, which lets the user create the ROS launch files
through graphical representations of the launch file elements.
The tool has an easy-to-use interface which handles the
creation of the ROS launch file in the background, without any
further involvement needed from the user.

II. LITERATURE REVIEW
This section covers a review of existing visual

programming software, which helped in seeing whether there
were any existing software products that did the same task, and
selecting features that were necessary for the development of
RADOE’s visual programming tool.

In terms of commercial software for visual programming,
the Microsoft Visual Programming Language [3] (Figure 2) is
one of the more widely-used ones. It comes as part of the
Microsoft Robotics Developer Studio, and can be used for both
general-purpose programming, as well as robotics-specific
services. It represents lower-level sensors and devices through



Fig. 1. Robot model displayed in rviz, a visualisation tool in ROS Fig. 2. Microsoft Visual Programming Language (MVPL) Interface

Fig. 3. rxDeveloper Interface

abstractions in the visual interface, which need to later be
implemented with specific drivers (in C#). It also has the
option of specifying pre-loaded controllers for hardware
through a manifest file. Even though there is nothing ROS-
specific about this software, it has a good working visual
interface and hence was reviewed.

Another set of robotics-based software that uses visual
programming is for educational purposes. The most commonly
known in this category are the series of software products
released by LEGO; more specifically, their MINDSTORMS
EV3 software [4]. This consists of block-based programs,
where each sensor / functionality is represented by a graphical
block, which can be plugged into other blocks to determine the
flow of the program. The programming constructs are simple
and only deal with the limited hardware that comes with the
LEGO toolkits.

There are various other examples of robotics software that
have a visual programming interface for
educational/recreational use of robots, usually aimed at
children. These include Modkit [5] (to connect to Arduino
hardware components), ROBO Pro [6] (for programming
fischertechnik robots), CiMPLE [7] (used in programming
ThinkLabs robots) etc. While these are not connected to ROS
programming, they help in understanding the various aspects of
visual programming software that has good usability, and is
easy to pick up - even amongst non-technical users, like
children.

The third category of visual programming tools is those
more directly related to ROS, developed as third-party software.
One of these is rxDeveloper [8], a tool developed for the same
purpose as RADOE’s visual programming tool - to generate
ROS launch files using a visual programming interface. It is
written in C++, in the QT programming development
environment. Nodes and other components are represented as
boxes, which can be dragged and dropped onto a canvas
(Figure 3). Nodes can also specify if they communicate with
other nodes by connecting them with lines (which remap topic
names, so that both nodes communicate using the same topic).
The launch file can be generated and reloaded, and also run
directly from the tool. While this tool has most of the features
required for the creation of ROS Launch files, it works with an
older version of ROS (Electric Emys), and can possibly be
improved in terms of user-friendliness.

Another tool that works well with ROS is the ROS Toolkit
for LabView [9], created by Clearpath Robotics. It helps
LabView [10] (a visual programming software by National
Instruments intended for system design and instrument control)
access ROS nodes through TCP / IP and web sockets using a
ROS package called rosbridge [11]. This was made to work
specifically with the Baxter Research Robot series, but also has
more general-purpose ROS functionality. While this serves
well to integrate the visual programming interface of LabView
with ROS, it is more cumbersome to construct and run ROS-
only programs in comparison to ROS Launch files.

Most of the above-mentioned software products are good
for developing robotics applications. However, there are few
software products that could be used to develop applications in
ROS. Therefore, in this paper, we propose a new tool for
generating ROS launch files to program robots.

III. OUR WORK
Our software environment, RADOE, consists of various

software tools that ease the development of robot applications.
These include using the QT programming environment (used
for C++ programming), and ROS packages such as rviz (used
for visualisation and simulation of robots). To help the user
understand and organise ROS-based applications easily, a
visual programming tool was developed within this
environment. This software tool deals with ROS components at
the node or launch file level.



Fig. 4. Proposed tool’s interface

Fig. 5. Example of Editor Window for individual components

On starting the tool, the user gets an interface (Figure 4)
that includes a list of buttons, which show all the possible
elements that can be added into a ROS launch file, and a blank
canvas on which the various elements are represented as
rectangles. On being clicked, the buttons open up an editor
window where various properties of that element can be
specified. On completion, the element is represented on the
canvas. Some of the fields have been made more user-friendly:
for instance, in the editor for the Include element, a file name
needs to be specified; this is done using a separate window for
file selection, rather than having the name manually typed out
(which is more cumbersome and might cause typing errors)
(Figure 5).

Elements can be dragged and dropped around the canvas,
which can help in easily visualizing the content of the launch
file. Double-clicking on an element re-opens the editor window
with all the properties of the element filled in; it thus becomes
easy to change the values for these properties after creation.
They can also be resized easily by clicking and dragging on the
bottom-right corner of the rectangle. Certain elements can also
have other elements dragged and dropped onto them, to create
nested structures. This is similar to the structure that can be
found in ROS launch files - for example Group elements can
hold any other type of element within themselves.

The toolbar on the top contains a button called Remap
Mode. This option enables a node’s topic name to be remapped,
so that it can communicate with another node that uses a
different topic name. In the remap mode, this is done by
clicking on the source node and dragging to the destination
node. On completing the drag, an editor window shows up that
lets the user specify the topic name to be remapped, and its new
name. A line drawn between the nodes represents the
remapping when completed successfully.

Once the launch file has been designed, it can be saved by
clicking on the Create Launch File button on the top toolbar,
which generates a launch file with all the elements on the
canvas, created according to the specifications laid down by
ROS. The launch file can also be loaded back into the program
using the Open Launch File button to select the required file, so
that it can be further edited.

Before saving the launch file, the user might want to test
how it runs. For this, there is a Run Launch File option, which
creates a temporary launch file and runs this on a terminal
emulator.

From the software architecture point-of-view, each element
class inherits from a base class called BaseDragWidget. This
contains the common behaviour for all widgets, as well as
common properties shared by all ROS Launch elements (such
as the if and unless attributes). Each element class has the
corresponding properties that are contained in that ROS launch
element. Each element also has a corresponding dialog widget
that shows the edit window, which helps in setting property
values, and editing them later on.

The main canvas is represented by a CanvasWidget, which
implements drag-and-drop functionality for the widgets, and
also draws lines to represent the remaps. The main widget,
which includes the canvas, and the buttons for initialising each

element, also implements the main toolbar functionalities of
saving / loading / running the launch files. On saving the
launch files, each element present on the canvas is invoked to
return its ROS launch file text. Each element also recursively
calls each of its children in turn, to return the nested ROS
launch file text.

IV. COMPARATIVE STUDY
Since the rxDeveloper tool is the closest in intent and

functionality to our visual programming tool, the following is a
comparison between the two:

A. Functionality
Both rxDeveloper and our tool have mostly similar

functionalities, including dragging and dropping of elements,
connecting them via line-drawing etc. rxDeveloper has the
option of specifying a node’s topic publications/subscriptions
in a node specification file, which is stored in the YAML
format. This can help in other additional features, such as
generating source code templates. However, since our tool is
mainly concerned with creation of ROS launch files, this is
considered as a feature that is additional to the requirements of
our tool. Moreover, our visual programming tool is a
supplement to the RADOE software tools, and is meant to
simplify the development of other ROS-based applications.



B. Usability
While both tools have many similar features that improve

the user experience in creating ROS launch files, there are
some aspects to the rxDeveloper tool that make it slightly less
user-friendly. For instance, the height and width of elements
can only be changed by manually typing in the pixel value,
whereas our tool has the option of dragging to resize. In
addition, our tool has some other features that make it easier to
use, such as selecting a ROS launch file to include by using a
file selector which automatically fills in the file name.

We started a user study to gauge the usefulness of the tool,
with subjective feedback from the user helping in deciding how
the tool can be further improved. The initial results are positive.
We will report quantitatively in future.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed and implemented a visual

programming software tool that helps in the creation and
visualization of ROS launch files. It enables easy and intuitive
programming of a robot at a modular level. The initial user
study has confirmed the usefulness of our design and
implementation. The tool has been integrated in a set of
software tools in the Robot Application Development and
Operating Environment (RADOE).

While our tool covers all the basic features needed to create
ROS launch files, there are additional features that could be
added in the future to improve it further. These include finding
a way to automatically extract publication/subscription
information of a node using just its package name and node
name; while the current API from ROS does not allow this to
be done, a workaround may be found with further research.

Another aspect would be to make the interface more
generic to use, so that it is not restricted to the creation of ROS
launch files. This would enable the tool to be used to structure
ROS applications in our RADOE environment at a higher level,
such as visualising modules and the connections between them,
without relying on ROS-specific terminology. This would
make it even easier for general users to understand and design
robotics applications.

REFERENCES
[1] W.M Johnston, J.R.P. Hanna, and R. J. Millar, Advances in dataflow

programming languages. ACM Computing Surveys 36 (1): 1–34, 2004.
[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” in Proc. of IEEE International Conference on Robotics and
Automation (ICRA), Kobe, Japan, 2009.

[3] https://msdn.microsoft.com/en-us/library/bb483088.aspx
[4] http://www.lego.com/en-us/mindstorms/learn-to-program
[5] A. Milner and E. Baafi, “Modkit: Blending and Extending Approachable

Platforms for Creating Computer Programs and Interactive Objects,” in
IDC , Ann Arbor, USA, 2011.

[6] http://www.fischertechnik.de/en/Home/info/computing/ROBO-Pro-
Software.aspx/usetemplate-1_column_no_pano/

[7] N. Karwall, “Visual Programming Application for Children to program
Robotic Toys,” in ‘Designing for Children’, IDC, IIT Bombay, India,
2010.

[8] F. Müllers, D. Holz, and S. Behnke, “rxDeveloper: GUI-Aided Software
Developmemt in ROS,” in SDIR VII - ICRA, St. Paul, Minnesota, USA,
2012.

[9] https://sites.google.com/site/rosforlabview/
[10] http://www.ni.com/labview/
[11] https://github.com/RobotWebTools/rosbridge_suite

http://www.lego.com/en-us/mindstorms/learn-to-program
http://www.fischertechnik.de/en/Home/info/computing/ROBO-Pro-Software.aspx/usetemplate-1_column_no_pano/
http://www.ni.com/labview/

	INTRODUCTION
	LITERATUREREVIEW
	OURWORK
	COMPARATIVESTUDY
	Functionality
	Usability

	CONCLUSIONANDFUTUREWORK
	REFERENCES


